Trends

Future batteries, coming soon: Charge in seconds, last months and power over the air

While smartphones, smart homes and even smart wearables are growing ever more advanced, they’re still limited by power. The battery hasn’t advanced in decades. But we’re on the verge of a power revolution.

Big technology and car companies are all too aware of the limitations of lithium-ion batteries. While chips and operating systems are becoming more efficient to save power we’re still only looking at a day or two of use on a smartphone before having to recharge.

While it may be some time before we get a week’s life out of our phones, development is progressing well. We’ve collected all the best battery discoveries that could be with us soon, from over the air charging to super-fast 30-second re-charging. Hopefully, you’ll be seeing this tech in your gadgets soon.

Capturing energy from Wi-Fi

While wireless inductive charging is common, being able to capture energy from Wi-Fi or other electromagnetic waves remains a challenge. A team of researchers, however, has developed a rectenna (radio wave harvesting antenna) that is only several atoms think, making it incredibly flexible.

The idea is that devices can incorporate this molybdenum disulphide-based rectenna so that AC power can be harvested from Wi-Fi in the air and converted to DC, either to recharge a battery or power a device directly. That could see powered medical pills without the need for an internal battery (safer for the patient), or mobile devices that don’t need to be connected to a power supply to recharge.

Energy harvested from the device owner

You could be the source of power for your next device, if research into TENGs comes to fruition. A TENG – or triboelectric nanogenerator – is a power harvesting technology which captures the electric current generated through contact of two materials.

A research team at Surrey’s Advanced Technology Institute and the University of Surrey have given an insight into how this technology might be put into place to power things like wearable devices. While we’re some way from seeing it in action, the research should give designers the tools they need to effectively understand and optimise future TENG implementation.

Gold nanowire batteries

Great minds over at the University of California Irvine have cracked nanowire batteries that can withstand plenty of recharging. The result could be future batteries that don’t die.

Nanowires, a thousand times thinner than a human hair, pose a great possibility for future batteries. But they’ve always broken down when recharging. This discovery uses gold nanowires in a gel electrolyte to avoid that. In fact, these batteries were tested recharging over 200,000 times in three months and showed no degradation at all.

Solid state lithium-ion

Solid state batteries traditionally offer stability but at the cost of electrolyte transmissions. A paper published by Toyota scientists writes about their tests of a solid state battery which uses sulfide superionic conductors. All this means a superior battery.

The result is a battery that can operate at super capacitor levels to completely charge or discharge in just seven minutes – making it ideal for cars. Since it’s solid state that also means it’s far more stable and safer than current batteries. The solid-state unit should also be able to work in as low as minus 30 degrees Celsius and up to one hundred.

The electrolyte materials still pose challenges so don’t expect to see these in cars soon, but it’s a step in the right direction towards safer, faster-charging batteries.

Grabat graphene batteries

Graphene batteries have the potential to be one of the most superior available. Grabat has developed graphene batteries that could offer electric cars a driving range of up to 500 miles on a charge.

Graphenano, the company behind the development, says the batteries can be charged to full in just a few minutes and can charge and discharge 33 times faster than lithium ion. Discharge is also crucial for things like cars that want vast amounts of power in order to pull away quickly.

There’s no word on if Grabat batteries are currently being used in any products, but the company has batteries available for cars, drones, bikes and even the home.

Laser-made micro supercapacitors

Scientists at Rice University have made a breakthrough in micro-supercapacitors. Currently, they are expensive to make but using lasers that could soon change.

By using lasers to burn electrode patterns into sheets of plastic manufacturing costs and effort drop massively. The result is a battery that can charge 50 times faster than current batteries and discharge even slower than current supercapacitors. They’re even tough, able to work after being bent over 10,000 times in testing.

Foam batteries

Prieto believes the future of batteries is 3D. The company has managed to crack this with its battery that uses a copper foam substrate.

This means these batteries will not only be safer, thanks to no flammable electrolyte, but they will also offer longer life, faster charging, five times higher density, be cheaper to make and be smaller than current offerings.

Prieto aims to place its batteries into small items first, like wearables. But it says the batteries can be upscaled so we could see them in phones and maybe even cars in the future.

Foldable battery is paper-like but tough

The Jenax J.Flex battery has been developed to make bendable gadgets possible. The paper-like battery can fold and is waterproof meaning it can be integrated into clothing and wearables.

The battery has already been created and has even been safety tested, including being folded over 200,000 times without losing performance.

uBeam over the air charging

uBeam uses ultrasound to transmit electricity. Power is turned into sound waves, inaudible to humans and animals, which are transmitted and then converted back to power upon reaching the device.

The uBeam concept was stumbled upon by 25-year-old astrobiology graduate Meredith Perry. She started the company that will make it possible to charge gadgets over the air using a 5mm thick plate. These transmitters can be attached to walls, or made into decorative art, to beam power to smartphones and laptops. The gadgets just need a thin receiver in order to receive the charge.

About the author

David

Add Comment

Click here to post a comment